用于处理彩票的大数据算法
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

183 lines
5.8 KiB

import random
import pymysql
from pymysql.cursors import DictCursor
import json
from blue_forecast import dict_sort, dict_rate
from lottery_random import new_num
db = {
'host': 'home.rogersun.online',
'user': 'root',
'password': 'Sxzgx1209',
'database': 'lottery'
}
def get_all_data():
conn = pymysql.connect(**db)
curser = conn.cursor(DictCursor)
curser.execute("SELECT * FROM history")
_all_data = curser.fetchall()
# print(all_data)
return _all_data
def get_all_red():
_all_data = get_all_data()
_red_data = []
for data in _all_data:
_red_data.append(json.loads(data['red']))
return _red_data
def get_all_red_with_id():
_all_data = get_all_data()
_red_data_dict = {}
for data in _all_data:
_red_data_dict[data['id']] = json.loads(data['red'])
return _red_data_dict
def get_last_red(_red_data):
return _red_data[-1]
def get_last_id(_all_data):
return _all_data[-1]['id']
def get_all_data_rate(_all_red_data):
_red = {}
for _red_list in _all_red_data:
for r in _red_list:
if r in _red.keys():
_red[r] += 1
else:
_red[r] = 1
print("历史红球的出现概率:")
for k, v in dict_rate(dict_sort(_red, 'val', True)).items():
print(f"{k}: {v}")
def get_red_forecast(_all_data, _red_data_dict, _red_data, range_num=1):
print("红球预期数据:")
_last_red = get_last_red(_red_data)
_last_id = get_last_id(_all_data)
_id_dict = {}
for _red in _last_red:
for _id, _red_list in _red_data_dict.items():
if _id == _last_id:
break
if _red in _red_list:
if _red in _id_dict.keys():
_id_dict[_red].append(_id + 1)
else:
_id_dict[_red] = [_id + 1]
# for k, v in _id_dict.items():
# print(f"{k}-{v}")
_red_dict = {}
for _red, _id_list in _id_dict.items():
# print(f"{_red}-{_id_list}")
_red_temp_dict = {}
for _id in _id_list:
for _r in _red_data_dict[_id]:
if _r in _red_temp_dict.keys():
_red_temp_dict[_r] += 1
else:
_red_temp_dict[_r] = 1
_red_dict[_red] = _red_temp_dict
# for k, v in _red_dict.items():
# print(f"{k}-{dict_rate(dict_sort(v,'val', True))}")
_red_forecast_dict = {}
for _red, _red_list in _red_dict.items():
for _r, _sum in _red_list.items():
if _r in _red_forecast_dict.keys():
_red_forecast_dict[_r] += _sum
else:
_red_forecast_dict[_r] = _sum
_red_forecast_dict = dict_rate(dict_sort(_red_forecast_dict, 'val', True))
n = 1
for k, v in _red_forecast_dict.items():
if n == 12 or n == 23:
print('-' * 10)
print(f"{k}-{v}")
n += 1
_red_forecast_list = []
for _red, __ in _red_forecast_dict.items():
_red_forecast_list.append(_red)
# print('高概率红球推荐:')
# print(', '.join(sorted(_red_forecast_list[0:6])))
# 产生随机数
red_index_list = get_random_index()
_random_red = []
for index in red_index_list:
_random_red.append(_red_forecast_list[index])
_random_red = sorted(_random_red)
print('随机红球推荐:')
print(', '.join(_random_red))
return _red_forecast_dict, _red_forecast_list, _random_red
def get_last_date_id():
conn = pymysql.connect(**db)
curser = conn.cursor(DictCursor)
curser.execute("SELECT * FROM history ORDER BY id DESC LIMIT 1")
_data = curser.fetchone()
# print(all_data)
return _data['dateId']
def update_red_forecast_db():
all_data = get_all_data()
red_data = get_all_red()
red_data_dict = get_all_red_with_id()
red_forecast_dict, red_forecast_list, random_red = get_red_forecast(all_data, red_data_dict, red_data)
date_id = all_data[-1]['dateId']
params = 1
red_rate = json.dumps(red_forecast_dict)
conn = pymysql.connect(**db)
curser = conn.cursor(DictCursor)
last_date_id = get_last_date_id()
curser.execute("SELECT * FROM lottery.red_forecast WHERE dateId = %s", (last_date_id,))
have_duplicate = False if len(curser.fetchall()) == 0 else True
if not have_duplicate:
curser.execute(
"INSERT INTO lottery.red_forecast (`dateId`, `params`, `red_rate`, `red_suggest`) VALUES (%s, %s, %s, %s)",
(date_id, params, red_rate, json.dumps(random_red)))
conn.commit()
curser.close()
else:
print('数据库中有重复记录,无需重复插入')
def get_random_index():
# 产生随机数
random_high, random_middle, random_low = -1, -1, -1
while random_high < 0 or random_middle < 0 or random_low < 0:
random_high = random.randint(0, 2)
random_low = random.randint(1, 6 - random_high)
random_middle = 6 - random_high - random_low
print('分布区间(高概率区,中概率区,低概率区):', random_high, random_middle, random_low)
high_red_index_list = [(n[0]-1) for n in new_num(1, 11, random_high)[0:random_high]]
middle_red_index_list = [(n[0]-1) for n in new_num(12, 22, random_middle)[0:random_middle]]
low_red_index_list = [(n[0]-1) for n in new_num(23, 33, random_low)[0:random_low]]
print(high_red_index_list)
print(middle_red_index_list)
print(low_red_index_list)
red_index_list = sorted(high_red_index_list + middle_red_index_list + low_red_index_list)
print(f"排序后结果")
print(red_index_list)
return red_index_list
if __name__ == "__main__":
# 实现获取含有这个数的下一期或几期中数字的概率
# 实现获取含有所以数据的总出现概率
update_red_forecast_db()
# print(get_random_index())