1 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
crystalmccabe4 edited this page 2 weeks ago


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion parameters to build, experiment, and responsibly scale your generative AI concepts on AWS.

In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to deploy the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that uses reinforcement finding out to enhance reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key identifying function is its support knowing (RL) step, which was utilized to fine-tune the design's reactions beyond the basic pre-training and tweak process. By including RL, DeepSeek-R1 can adjust more successfully to user feedback and objectives, ultimately boosting both importance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, implying it's geared up to break down intricate inquiries and reason through them in a detailed manner. This guided reasoning process allows the model to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT abilities, aiming to produce structured actions while focusing on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has actually caught the market's attention as a flexible text-generation model that can be incorporated into numerous workflows such as representatives, rational thinking and information interpretation tasks.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture enables activation of 37 billion specifications, enabling efficient inference by routing inquiries to the most appropriate professional "clusters." This technique enables the model to specialize in various problem domains while maintaining overall performance. DeepSeek-R1 requires a minimum of 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking capabilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller, more efficient models to imitate the behavior and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as a teacher design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest deploying this model with guardrails in location. In this blog, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous material, and assess designs against key safety criteria. At the time of writing this blog, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can create multiple guardrails tailored to different use cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limit increase, develop a limitation boost request and reach out to your account team.

Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For guidelines, see Set up permissions to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, prevent damaging content, and assess designs against crucial safety criteria. You can implement security procedures for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to examine user inputs and model responses released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for reasoning. After receiving the model's output, another guardrail check is used. If the output passes this last check, it's returned as the result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections show inference utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, pick Model catalog under Foundation models in the navigation pane. At the time of writing this post, you can use the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and pick the DeepSeek-R1 design.

The model detail page provides essential details about the design's capabilities, prices structure, and execution guidelines. You can find detailed usage directions, consisting of sample API calls and code snippets for combination. The design supports numerous text generation jobs, including material creation, code generation, and question answering, utilizing its reinforcement learning optimization and CoT reasoning abilities. The page likewise consists of implementation options and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, choose Deploy.

You will be prompted to set up the implementation details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, get in a number of circumstances (in between 1-100). 6. For Instance type, pick your instance type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can set up advanced security and facilities settings, consisting of virtual private cloud (VPC) networking, service function consents, and encryption settings. For many use cases, the default settings will work well. However, for production deployments, you might wish to evaluate these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the model.

When the implementation is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock play ground. 8. Choose Open in play ground to access an interactive user interface where you can try out different prompts and adjust model criteria like temperature and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimum results. For instance, material for reasoning.

This is an outstanding way to check out the model's thinking and text generation capabilities before integrating it into your applications. The playground offers instant feedback, assisting you comprehend how the model reacts to different inputs and letting you fine-tune your prompts for ideal results.

You can rapidly test the design in the playground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example shows how to perform inference using a released DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually developed the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends out a demand to create text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML options that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two practical techniques: using the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both approaches to help you pick the technique that finest matches your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to develop a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design browser shows available models, with details like the service provider name and design abilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card reveals crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), suggesting that this model can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the design details page.

    The model details page includes the following details:

    - The design name and provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, trademarketclassifieds.com such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you deploy the model, it's recommended to examine the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with deployment.

    7. For Endpoint name, use the instantly produced name or create a customized one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is crucial for cost and performance optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for precision. For this model, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The release process can take several minutes to finish.

    When implementation is complete, your endpoint status will alter to . At this point, the model is all set to accept reasoning demands through the endpoint. You can keep track of the deployment development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the deployment is total, you can conjure up the model using a SageMaker runtime client and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the model is offered in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Tidy up

    To prevent unwanted charges, complete the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the model using Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace deployments.
  5. In the Managed implementations area, find the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're deleting the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get going. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business construct innovative options using AWS services and sped up compute. Currently, he is concentrated on developing methods for fine-tuning and optimizing the inference efficiency of large language models. In his downtime, Vivek delights in treking, seeing films, and attempting different cuisines.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is passionate about constructing services that assist customers accelerate their AI journey and unlock company value.